16,030 research outputs found

    Pseudographs and Lax-Oleinik semi-group: a geometric and dynamical interpretation

    Full text link
    Let H be a Tonelli Hamiltonian defined on the cotangent bundle of a compact and connected manifold and let u be a semi-concave function defined on M. If E (u) is the set of all the super-differentials of u and (\phi t) the Hamiltonian flow of H, we prove that for t > 0 small enough, \phi-t (E (u)) is an exact Lagrangian Lipschitz graph. This provides a geometric interpretation/explanation of a regularization tool that was introduced by P.~Bernard to prove the existence of C 1,1 subsolutions

    Towards adiabatic waveforms for inspiral into Kerr black holes: I. A new model of the source for the time domain perturbation equation

    Full text link
    We revisit the problem of the emission of gravitational waves from a test mass orbiting and thus perturbing a Kerr black hole. The source term of the Teukolsky perturbation equation contains a Dirac delta function which represents a point particle. We present a technique to effectively model the delta function and its derivatives using as few as four points on a numerical grid. The source term is then incorporated into a code that evolves the Teukolsky equation in the time domain as a (2+1) dimensional PDE. The waveforms and energy fluxes are extracted far from the black hole. Our comparisons with earlier work show an order of magnitude gain in performance (speed) and numerical errors less than 1% for a large fraction of parameter space. As a first application of this code, we analyze the effect of finite extraction radius on the energy fluxes. This paper is the first in a series whose goal is to develop adiabatic waveforms describing the inspiral of a small compact body into a massive Kerr black hole.Comment: 21 pages, 6 figures, accepted by PRD. This version removes the appendix; that content will be subsumed into future wor

    A multiscale regularized restoration algorithm for XMM-Newton data

    Get PDF
    We introduce a new multiscale restoration algorithm for images with few photons counts and its use for denoising XMM data. We use a thresholding of the wavelet space so as to remove the noise contribution at each scale while preserving the multiscale information of the signal. Contrary to other algorithms the signal restoration process is the same whatever the signal to noise ratio is. Thresholds according to a Poisson noise process are indeed computed analytically at each scale thanks to the use of the unnormalized Haar wavelet transform. Promising preliminary results are obtained on X-ray data for Abell 2163 with the computation of a temperature map.Comment: To appear in the Proceedings of `Galaxy Clusters and the High Redshift Universe Observed in X-rays', XXIth Moriond Astrophysics Meeting (March 2001), Eds. Doris Neumann et a

    Report on the first round of the Mock LISA Data Challenges

    Get PDF
    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries

    High Speed Blanking: An Experimental Method to Measure Induced Cutting Forces

    Get PDF
    Lien vers la version Ă©diteur: http://link.springer.com/article/10.1007/s11340-013-9738-1A new blanking process that involves punch speed up to 10 ms −1 has obvious advantages in increased productivity. However, the inherent dynamics of such a process makes it difficult to develop a practical high speed punch press. The fracture phenomenon governing the blanking process has to be well understood to correctly design the machine support and the tooling. To observe this phenomenon at various controlled blanking speeds a specific experimental device has been developed. The goal is to measure accurately the shear blanking forces imposed on the specimen during blanking. In this paper a new method allowing the blanking forces to be measured and taking into account the proposed test configuration is explained. This technique has been used to determine the blanking forces experienced when forming C40 steel and quantifies the effect of process parameters such as punch die clearance, punch speed, and sheet metal thickness on the blanking force evolution

    A Backward Particle Interpretation of Feynman-Kac Formulae

    Get PDF
    We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results w.r.t. the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. We also illustrate these results in the context of computational physics and imaginary time Schroedinger type partial differential equations, with a special interest in the numerical approximation of the invariant measure associated to hh-processes

    An SZ/X-ray galaxy cluster model and the X-ray follow-up of the Planck clusters

    Full text link
    Sunyaev-Zel'dovich (SZ) cluster surveys will become an important cosmological tool over next few years, and it will be essential to relate these new surveys to cluster surveys in other wavebands. We present an empirical model of cluster SZ and X-ray observables constructed to address this question and to motivate, dimension and guide X-ray follow-up of SZ surveys. As an example application of the model, we discuss potential XMM-Newton follow-up of Planck clusters.Comment: 4 pages, 5 figures. To appear in the proceedings of the XXXXIIIrd Rencontres de Morion

    A Chandra X-ray Study of Cygnus A - II. The Nucleus

    Full text link
    We report Chandra ACIS and quasi-simultaneous RXTE observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (> a few keV) X-ray emission is spatially unresolved with a size \approxlt 1 arcsec (1.5 kpc, H_0 = 50 km s^-1 Mpc^-1) and coincides with the radio and near infrared nuclei. In contrast, the soft (< 2 keV) emission exhibits a bi-polar nebulosity that aligns with the optical bi-polar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] \lambda 5007 and H\alpha + [N II] \lambda\lambda 6548, 6583 nebulosity imaged with HST. At the location of the nucleus there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the 6 detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power law spectrum with \Gamma_h = 1.52^{+0.12}_{-0.12} (similar to other narrow line radio galaxies) and equivalent hydrogen column N_H (nuc) = 2.0^{+0.1}_{-0.2} \times 10^{23} cm^-2. (Abstract truncated).Comment: To be published in the Astrophysical Journal, v564 January 1, 2002 issue; 34 pages, 11 figures (1 color

    The Nature of Occupational Unemployment Rates in the United States: Hysteresis or Structural?

    Get PDF
    This paper provides new evidence on the nature of occupational differences in unemployment dynamics, which is relevant for the debate between the structural or hysteresis hypotheses. We develop a procedure that permits us to test for the presence of a structural break at unknown date. Our approach allows the investigation of a broader range of persistence than the 0/1 paradigm about the order of integration, usually implemented for testing the hypothesis of hysteresis in occupational unemployment. In almost all occupations, we find support for both the structuralist and the hysteresis hypotheses, but stress the importance of estimating the degree of persistence of seasonal shocks along with the degree of long-run persistence on raw data without applying seasonal filters. Indeed hysteresis appears to be underestimated when data are initially adjusted using traditional seasonal filters.fractional integration, structural break, occupational unemployment, structuralist, hysteresis
    • 

    corecore